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Estimating Derivatives of Noisy Simulations1

Jorge J. Moré and Stefan M. Wild

Abstract

We employ recent work on computational noise to obtain near-optimal finite differ-

ence estimates of the derivatives of a noisy function. Our analysis employs a stochastic

model of the noise without assuming a specific form of distribution. We use this model

to derive theoretical bounds for the errors in the difference estimates and obtain an eas-

ily computable difference parameter that is provably near-optimal. Numerical results

closely resemble the theory and show that we obtain accurate derivative estimates even

when the noisy function is deterministic.

1 Introduction

We consider a fundamental problem in scientific computing: Given f : Rn 7→ Rm, a base

point x0, and a direction p ∈ Rn, compute an approximation to the directional derivative

f ′(x0; p). Of special importance is the case where the evaluation of f is the result of noisy

simulations. In these simulations the value of f is known only within a given tolerance as a

result of finite precision iterative methods and adaptive strategies, and this uncertainty in

the value of f gives rise to computational noise. We are also interested in situations where

the evaluation of f is computationally expensive.

There are basically three approaches to approximating directional derivatives. We can

hand-code the derivative and thus be assured of a high-precision approximation. This ap-

proach is error-prone, however, and often considered infeasible for complex simulations.

We can use automatic differentiation techniques [1, 3, 7] to compute an approximation.

Many users consider this approach to be inapplicable to complex simulations; but in our

experience, this view tends to be based on an incomplete understanding of automatic differ-

entiation. If properly implemented, automatic differentiation techniques provide accurate

approximations to the derivative. Automatic differentiation, however, can be computation-

ally expensive relative to the evaluation of f . The relative cost depends on the application

that produces f ; but in theory, automatic differentiation techniques can produce a direc-

tional derivative at a modest multiple of the cost of evaluating f .

In this work we study how to obtain accurate difference approximations to the directional

derivative. This approach is easily implemented and produces good approximations if the

difference parameter is chosen appropriately; as we will demonstrate, the accuracy depends
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on the noise level of the function. Another advantage is that a difference approximation is

potentially less expensive than automatic differentiation techniques.

We motivate this work with the approximation of Jacobian-vector products for Newton-

Krylov solvers, Given f : Rn 7→ Rn and a vector p ∈ Rn, the approximation

f(x0 + tp)− f(x0)

t

can be used to estimate the Jacobian-vector product f ′(x0)p. In current practice, the choice

of difference parameter is usually of the form

σ(x0)ε
1/2
M ,

where εM is the unit roundoff and σ(·) is a scaling factor. A popular choice [9] for the

scaling factor is

σ(x0) =
max

{
|xT0 p|, xT∗ |p|

}
‖p‖

sign
(
xT0 p

)
,

where x∗ is a vector of typical values for the absolute values of the solution. The survey by

Knoll and Keyes [10] discusses other choices and notes that εM should be replaced by εrel
when f can be evaluated only to a relative precision of εrel, but the authors do not indicate

how to determine εrel.

Our aim in this work is to provide a precise specification for a difference parameter

that is computationally feasible and provably nearly optimal. Our approach bridges early

work [12, 6, 5] that assumes that the computed function f is deterministic with recent

work [2] where f is assumed to be determined by a stochastic process. We emphasize the

situation where the computed f is the result of a deterministic noisy simulation since this

case invariably arises in computationally expensive, complex simulations.

Directional derivatives can be studied by restricting attention to scalar-valued functions

defined in an interval I; the vector-valued case where f : R 7→ Rm is handled by working

with each component of f . Our computational model assumes that the computed function

f can be expressed as

f(t) = fs(t) + ε(t), t ∈ I, (1)

where fs : R 7→ R is a smooth, deterministic function and the noise ε : R 7→ R is stochastic.

The random variables ε(t) are assumed to be independent and identically distributed (iid)

for all t ∈ I, and we define the noise level of the function f as the standard deviation

εf = (Var{ε(t)})1/2 (2)

of the noise. We used this model [13] to study computational noise in both stochastic

and deterministic simulations. As part of this study we developed the ECnoise algorithm to

determine the noise level εf in a few function evaluations. We provide additional information

on computational noise in Section 2.

We formulate an approximation problem in terms of the derivative of the expected

value E {f} of the computed function f . Our assumptions on the model (1) imply that
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E {f} = fs + µ where µ is the mean of the noise, and thus the derivatives of fs and E {f}
agree. Hence, we approximate the derivative of the expected value by choosing a difference

parameter h that minimizes the (squared) l2 error

E(h) =

(
f(t0 + h)− f(t0)

h
− f ′s(t0)

)2

for all h such that t0 + h ∈ I. Minimizing the expected value E {E(h)} yields an optimal

approximation to the derivative of the expected value E {f}. Our results will show that

we can obtain nearly optimal estimates of the derivative from rough estimates of the noise

level and |f ′′|.
Section 3 presents the main results for estimating the derivative. We show that the

minimal value of the expected value E {E(h)} lies in the interval γ1εf [µL, µM ], where γ1 is

a constant and (µL, µM) are the minimum and maximum of |f ′′| on I, respectively. This

result provides tight bounds on the best possible error, and thus we use the term nearly

optimal for any difference parameter h such that E {E(h)} lies in this interval.

As a consequence of the results in Section 3 we show that the expected best possible

l2 error in a forward difference approximation to f ′ is of order ε
1/2
f and that a difference

parameter h∗ achieves this error. This result provides further justification for the use of the

term nearly optimal. In the remainder of this section we study, in particular, the variance

Var {E(h)} since this variance characterizes the spread of the errors about the mean.

The results in Section 3 for the forward difference approximation of f ′ can be extended

to other approximations of f ′ or to approximations of higher-order derivatives. Section 4

illustrates these extensions with the central difference approximation to f ′ and f ′′. In both

cases we determine the best possible l2 error in the difference approximation.

Section 5 describes our algorithm for obtaining a nearly optimal estimate of the deriva-

tive in a deterministic simulation. We consider forward differences but a similar approach

can be applied for other difference schemes. The main ingredient in this algorithm is a test

to decide whether a difference parameter h produces an adequate estimate of f ′′. Given

this estimate and an estimate for the noise level εf , we determine an estimate h∗ for the

optimal difference parameter.

Section 6 presents computational experiments for both stochastic and deterministic

problems. The aim of these experiments is to study the performance of the parameter

h∗ determined in Section 5. Our sample problems include a Monte Carlo simulation, noisy

quadratic problems defined by the iterative (bicgstab) solution of sparse systems of linear

equations, and smooth nonlinear problems where the number of variables range up to 6.4 ·
105. In all cases we show that E(h∗) ≤ E(h) for almost every h.

Our computational results show that we can produce nearly optimal approximations if

we have rough estimates of the noise level and |f ′′|. We claim that once these estimates are

obtained at a base point x0, they will be valid in a reasonably large neighborhood of x0 so

that new estimates will be needed only if the underlying algorithm makes large changes to

x0. Integration of our results into algorithms is a research topic that we plan to explore.
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2 Background

We review the theoretical and computational framework [13] for the study of computational

noise in a neighborhood N(x0) of a base point x0. The main assumption is that

f(x) = fs(x) + ε(x), x ∈ N(x0), (3)

where f : Rn 7→ R is the computed function, fs : Rn 7→ R is a smooth deterministic

function, and the noise ε : Rn 7→ R is a random variable whose distribution is independent

of x. The standard deviation εf = (Var{ε(x)})1/2 is then the noise level of the function.

This model of computational noise assumes that f is a stochastic process where the output

of the simulation is a (random) variable. As we will see, this model can provide useful

results even when f is deterministic.

The noise level of a function f provides the standard deviation for the values of a

simulation defined by f . This interpretation of the noise level has a rigorous justification

if the output f(x) of a simulation is a random variable with an expected value of E {f(x)}
and standard deviation εf . In this case the Chebyshev inequality

P
{
|f(x)− E {f(x)} | ≤ γεf

}
≥ 1− 1

γ2
,

where P{·} is the probability of the event, implies that

|f(x)− E {f(x)} | ≤ γεf (4)

is likely to hold for γ ≥ 1 of modest size. Thus, (4) holds in at least 99% of the cases with

γ = 10. Of course, tighter bounds are available if we have additional information on the

distribution of f . For example, if the distribution is normal, then (4) holds in at least 99.7%

of the cases with γ = 3.

We have developed the ECnoise algorithm [13] to determine the noise level εf of a func-

tion. The theoretical framework of ECnoise is based on stochastic noise but, importantly,

does not assume a specific distribution for the noise. On deterministic simulations our com-

putational results show that ECnoise produces reliable results in few function evaluations.

While the noise level εf is not a bound on rounding errors, it can be related to an

absolute bound εA if one is willing to make further distributional assumptions. For example,

if the techniques for estimating εA in [5, 6, 12] are interpreted in a stochastic framework by

assuming that the values of f(t) are uniformly distributed in [f(t)− εA, f(t) + εA], then the

absolute error may be obtained from the noise level by

εA = (31/2)εf .

The absolute error can be related to the noise level in a similar way for other distributions

with compact support.

To illustrate some of the features of computational noise, we consider the function

defined in Figure 1. This deterministic function analytically computes the square of a real
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f = t;

for k = 1:L; f = sqrt(f); end

for k = 1:L; f = f^2; end

f = f^2;

Figure 1: Code for the higham function f(t).

number in a manner inspired by Higham [8, pages 15–16]. As the parameter L increases,

the noise in f tends to increase.

Figure 2 (left) shows the error f(t) − t2 for t ≈ 2 when f is computed in MATLAB’s

double precision with an AMD 64-bit processor and L = 30. We note that f systemati-

cally underestimates t2 and hence these errors should not be considered to have zero mean.

Furthermore, though the errors appear to be relatively uniform, they are clearly not inde-

pendent and identically distributed in space. This is the central assumption in both the

present work and in [13]; but, as in [13], we will show that we obtain reasonable solutions

even when it is violated. For this example, the ECnoise algorithm estimates the noise level

to be εf = 4.9 · 10−7. As discussed earlier, εf is not a bound on the errors, and Figure 2

(left) shows errors as large as 18 · 10−7.

Figure 2: The noise in f (left) and the relative error in forward difference estimates of the

derivative for a variety of difference sizes h (right).

Figure 2 (right) is the subject of the present work and shows the relative errors between

a forward difference estimate for f ′(t) at t = 2, for difference parameters ranging from

h = 10−7 to h = 1, when compared with the analytic derivative 2t. The behavior shown is

typical for noisy functions. When h is large, the higher-order derivatives can lead to larger

errors; while for smaller h, the derivative estimates can vary greatly because the differences

in the function are dominated by the noise. For sufficiently small values of h, which in

this case includes the commonly used square root of machine precision h = 1.5 · 10−8, we

compute f(t+ h) = f(t). Thus the estimate of f ′(t) is 0.

Figure 2 (right) illustrates that a judicious choice of h can lead to a derivative estimate
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expected to be correct to four digits. Our goal in this work is to obtain such an h estimate

with only a few additional function values.

3 Estimating Directional Derivatives

Our results for estimating the derivative of a computed function f : R 7→ R use the compu-

tational model (1) for f so that the noise level of f is defined by (2). We implicitly assume

that the variance Var {ε(t)} is finite so that estimation of εf is reasonable and that εf > 0.

We first consider forward difference approximations to the derivative; in the next section

we show that the ideas extend to centered and higher-order approximations. For forward

difference approximations, we assume that the interval I in (1) is of the form

I =
{
t : t ∈ [t0, t0 + h0]

}
for some t0 and h0 > 0, and we seek a difference parameter h > 0 that minimizes the

expected value E {E(h)} of the least squares error

E(h) =

(
f(t0 + h)− f(t0)

h
− f ′s(t0)

)2

. (5)

As noted in the introduction, this criterion requires that we approximate the derivative of the

expected value E {f} at t0. We will show that it is an excellent predictor of computational

performance.

We need some basic properties of the expectation and variance operators. Recall that

the expectation is a linear operator and that for any scalars αk

Var

{
m∑
k=1

αkXk

}
=

m∑
k=1

α2
kVar {Xk}

if the random variables X1, . . . , Xm are independent. Also, for a random variable X with

mean E {X} = 0, we have

E
{

(X + α)2
}

= Var {X}+ α2 (6)

for any constant α.

Lemma 3.1 Assume that fs : R 7→ R is twice differentiable in I, and set µL and µM to the

minimum and maximum of |f ′′s | on I, respectively. If h ∈ (0, h0] then

φ(h;µL) ≤ E {E(h)} ≤ φ(h;µM),

where

φ(h;µ) =
1

4
µ2h2 + 2

ε2f
h2
.
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Proof. Taylor’s theorem shows that

fs(t0 + h)− fs(t0)
h

= f ′s(t0) + 1
2f
′′
s (ξ)h

for some ξ ∈ [t0, t0 + h] ⊆ I, and thus

E(h) =

(
1
2f
′′
s (ξ)h+

ε(t0 + h)− ε(t0)
h

)2

.

Since h ≤ h0, the iid assumption on the noise ε(·) and (6) then yield

E {E(h)} =
1

4
f ′′s (ξ)2h2 + 2

ε2f
h2
.

The expression on the right cannot be optimized easily because ξ depends on h, but we can

estimate this expression in terms of µL and µM . Indeed, the expression implies that

1

4
µ2Lh

2 + 2
ε2f
h2
≤ E {E(h)} ≤ 1

4
µ2Mh

2 + 2
ε2f
h2
.

This is the desired result. �

Lemma 3.1 provides the background needed to obtain sharp estimates of the minimum

of the expectation of the least squares deviation defined by (5). A key observation is that

φ is uniformly convex and that

min
h
φ(h;µ) = γ1µεf , γ1 = 21/2. (7)

In addition to εf > 0, we assume that µM > 0 since otherwise fs is affine and setting h = h0
would suffice. For future reference note that the global minimizer of φ for µ = µM is

hM = γ2

(
εf
µM

)1/2

, γ2 = 81/4 ≈ 1.68. (8)

The following result shows that hM plays an important role in the analysis of h 7→ E {E(h)}.

Theorem 3.2 Assume that fs : R 7→ R is twice differentiable in I; set µL and µM to the

minimum and maximum of |f ′′s | on I, respectively; and define hM by (8). If hM ≤ h0, then

γ1µLεf ≤ min
0≤h≤h0

E {E(h)} ≤ γ1µMεf .

Proof. Lemma 3.1 implies that φ(h;µL) ≤ E {E(h)} ≤ φ(h;µM) for h ≤ h0, and thus

min
0≤h≤h0

φ(h;µL) ≤ min
0≤h≤h0

E {E(h)} ≤ min
0≤h≤h0

φ(h;µM).

We estimate the lower bound by using (7) to show that

γ1µLεf ≤ min
0≤h≤h0

φ(h;µL).
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Moreover, since hM ≤ h0,
min

0≤h≤h0
φ(h;µM) = γ1µMεf .

The result is now follows directly from the last two estimates. �

An important consequence of Theorem 3.2 is that we can expect to obtain only an

approximation to f ′s(t0) of order ε
1/2
f . This follows from Theorem 3.2 since

(γ1µL εf )1/2 ≤ min
0≤h≤h0

E {E(h)}1/2 =

(
min

0≤h≤h0
E {E(h)}

)1/2

≤ (γ1µM εf )1/2 .

Our numerical results will confirm this conclusion.

We claim that the assumption that hM ≤ h0 in Theorem 3.2 is not restrictive, but the

main argument to support this claim is based on computational experiments. In practice we

compute hM by estimating the noise εf and approximating µM by an estimate of |f ′′s (t0)|.
Thus, we obtain an estimate of hM from (8). In our experiments we have found that,

remarkably,

min
h≥0

E {E(h)} ≈ E {E(hM)} ,

so this supports the claim that hM ≤ h0 holds in practice.

We conclude this discussion of Theorem 3.2 with the observation that if h0 < hM . then

the best possible error in E increases. This can be seen by noting that since h0 < hL =

γ2
√
εf/µL in this case, h0 is the solution of min0≤h≤h0 φ(h;µL), and thus Lemma 3.1 and

(7) imply that

γ1µLεf < φ(h0;µL) ≤ min
0≤h≤h0

φ(h;µL) ≤ min
0≤h≤h0

E {E(h)} .

Thus, the lower bound in Theorem 3.2 increases for h0 < hM .

Theorem 3.2 provides bounds on the best possible error but does not provide a difference

parameter h that minimizes E {E(h)}. We now show that hM is an approximate minimizer

in the sense that E {E(hM)} satisfies the bounds in Theorem 3.2.

Corollary 3.3 Assume that fs : R 7→ R is twice differentiable in I; set µL and µM to the

minimum and maximum of |f ′′s | on I, respectively; and define hM by (8). If µL > 0 and

hM ≤ h0, then

γ1µLεf ≤ E {E(hM)} ≤ γ1µMεf .

Moreover,

E {E(hM)} ≤
(
µM

µL

)
min

0≤h≤h0
E {E(h)} .

Proof. The bounds in Lemma 3.1 and (7) for µM and µL imply that

γ1µL εf ≤ φ(hM ;µL) ≤ E {E(hM)} ≤ φ(hM ;µM) = γ1µM εf .

This proves the first claim in this result. We conclude the proof by noting that

E {E(hM)} ≤ γ1µM εf =

(
µM

µL

)
γ1µL εf ≤

(
µM

µL

)
min

0≤h≤h0
E {E(h)} ,
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as desired. �

Theorem 3.2 and Corollary 3.3 are new, but related results have appeared in the litera-

ture. Earlier work on estimating directional derivatives includes [5, 6, 12]. In these results

it is assumed that the computed function is deterministic and of the form

f(t) = fs(t) + e(t), (9)

where the error function e represents the rounding errors in computing fs in working pre-

cision. The main assumption in these results is that there is a uniform bound

|e(t)| ≤ εA, t ∈ I, (10)

on the rounding errors. This assumption yields the bound∣∣∣∣f(t0 + h)− f(t0)

h
− f ′s(t0)

∣∣∣∣ ≤ ∣∣12f ′′s (ξ)
∣∣ |h|+ 2

εA
|h|
≤ 1

2µM |h|+ 2
εA
|h|
,

and thus the h > 0 that minimizes this upper bound on the l1 error is

hA = 2

(
εA
µM

)1/2

.

In this approach the optimal parameter hA minimizes an upper bound on the l1 error, but

we cannot rule out the possibility that there is another h > 0 that provides a significantly

better reduction in the error. Also note that in this derivation it is implicitly assumed that

t0 + hA ∈ I, that is, hA ≤ h0 when I = [t0, t0 + h0]. Another theoretical difference is that

εA is an absolute bound, and thus we may have εA � εf .

The recent contribution of Brekelmans et al. [2] assumes that the computed function is

stochastic and of the form (1) where the noise is iid with mean zero on R. This is a strong

assumption in numerical simulations where the iid assumption is likely to hold only in a

neighborhood of t0. Several schemes for obtaining gradient estimates are analyzed [2] under

this assumption; in the case of forward differences the upper bound

E {E(h)} ≤ φ(h;µM)

is derived, where φ is defined as in Lemma 3.1, and then the optimal parameter is defined as

the minimizer of the upper bound. This approach yields hM as the optimal parameter, but

there is no claim of optimality in the sense of Corollary 3.3. Moreover, since the assumptions

on the noise term are global, these results assume that h0 = +∞.

Thus far we have pursued an h that minimizes the mean squared error without consider-

ing how bad a particular realization of the error for this optimal h could be. The following

theorem characterizes the spread of the squared errors about this mean.

Theorem 3.4 Assume that fs : R 7→ R is twice differentiable in I; set µL and µM to the

minimum and maximum of |f ′′s | on I, respectively; and define

m4 = E
{(
ε(t)− E {ε(t)}

)4}
9



to be the fourth central moment of the noise. If m4 <∞, then for all h ∈ (0, h0],

2µ2Lε
2
f +

γ3
h4
≤ Var {E(h)} ≤ 2µ2Mε

2
f +

γ3
h4
,

where γ3 = 2(m4 + ε4f ).

Proof. We estimate Var {E(h)} by computing E {E(h)}2 and E
{
E(h)2

}
. As in Lemma 3.1,

E(h) =

(
1
2f
′′
s (ξ)h+

ε(t0 + h)− ε(t0)
h

)2

for some ξ ∈ [t0, t0 + h], and hence h ∈ (0, h0] implies that

E {E(h)}2 =
h4

16
f ′′s (ξ)4 + f ′′s (ξ)2ε2f +

4ε4f
h4

.

Since ε(t0) and ε(t0 + h) are iid, a computation shows that

E {ε(t0 + h)− ε(t0)} = 0, E
{

[ε(t0 + h)− ε(t0)]2
}

= 2ε2f ,

E
{

[ε(t0 + h)− ε(t0)]3
}

= 0, E
{

[ε(t0 + h)− ε(t0)]4
}

= 2m4 + 6ε4f .

These results, together with the above expression for E(h), yield that

E
{
E(h)2

}
=
h4

16
f ′′s (ξ)4 + 3f ′′s (ξ)2ε2f +

2

h4
(
m4 + 3ε4f

)
.

Combining the expressions for E {E(h)}2 and E
{
E(h)2

}
, we obtain

Var {E(h)} = E
{
E(h)2

}
− E {E(h)}2 = 2f ′′s (ξ)2ε2f +

γ3
h4
.

The bounds for Var {E(h)} now directly follow from the definition of µL and µM as the

extrema of |f ′′s | over the larger interval I within which ξ lies. �

Theorem 3.4 extends a similar result in [2] by providing a lower bound for Var {E(h)}.
Since γ3 > 0, the bounds for Var {E(h)} are both decreasing in h, and hence the variance

is minimized on I at h = h0. Thus, this result justifies choosing overestimates of hM , as

we will use in Section 5, instead of underestimates because of the tightening of the upper

bound on the variance Var {E(h)} as h increases. Also of interest are the bounds

1

4
µ2L

(
9ε2f +

m4

ε2f

)
≤ Var {E(hM)} ≤ 1

4
µ2M

(
9ε2f +

m4

ε2f

)

on the variance for hM , which follow immediately from Theorem 3.4.

Before pursuing extensions to other difference estimates, we illustrate the bounds in the

preceding results on a pair of simple stochastic functions,

f2(t) = t2 + 10−6U[−2
√
3,2
√
3], f3(t) = t3 + 10−6U[−2

√
3,2
√
3], (11)

10



Figure 3: Log-log plots of realizations of E(h) for the stochastic functions f2 and f3 in (11)

along with the expected error and uncertainty regions predicted by the theory.

where U[a,b] indicates a random variable distributed uniformly on [a, b] and the interval [a, b]

was chosen so that εf = 10−6 and m4 = 1.8 · 10−24. We take t0 = 1.

The circles in Figure 3 represent realizations of the (stochastic) error E(h) for different

values of h and illustrate the trend and variability of the squared error as a function of h.

Bounds, similar to those from Lemma 3.1,[
φ

(
h; min

t0≤t≤t0+h
|f ′′s (t)|

)
, φ

(
h; max

t0≤t≤t0+h
|f ′′s (t)|

)]
,

on the mean E {E(h)} are shown in black. For the quadratic f2, the second derivative f ′′s is

constant, and hence the bounds are equal. For the cubic f3, the rightmost part of Figure 3

shows that the width of the bounds grows as the difference between the minimum and

maximum of |f ′′s | grows.

The shaded region in Figure 3 represents two standard deviations from the bounds on

the mean, where the standard deviation is estimated by using a bound similar to that in

Theorem 3.4, (
2ε2f max

t0≤t≤t0+h
|f ′′s (t)|2 +

γ3
h4

)1/2

,

and shows that this variance becomes negligible relative to the mean E {E(h)} as h grows.

We also illustrate a realization of E(h∗) when h∗ is defined by (8) using estimates of µM and

εf described in Section 5.

4 Extensions

Our results for the forward difference approximation of f ′ can be extended to other approx-

imations of f ′ or to approximations of higher-order derivatives. In this section we illustrate

these extensions with the central difference approximation to f ′ and f ′′.
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Our assumptions on the computed function are similar to those in Section 3 with the

interval within which we assume that the random variables {ε(t) : t ∈ I} are iid of the form

I =
{
t : |t− t0| ≤ h0

}
for some t0 and h0 > 0. The techniques used in these extensions are similar to those used

in Section 3. In all cases we obtain bounds of the form

φ(h;µL) ≤ E {E(h)} ≤ φ(h;µM),

where E is the squared error between the approximation and the derivative, and φ is a

function of h and µ. We estimate the least value of E {E(h)} from the two-sided bound of

E {E(h)} in terms of φ.

We first consider central difference approximations to f ′. In this case the expected least

squares error in the approximation is

Ec(h) =

(
f(t0 + h)− f(t0 − h)

2h
− f ′s(t0)

)2

.

Lemma 4.1 Assume that fs : R 7→ R is three times differentiable in I, and set µL and µM

to the minimum and maximum of |f (3)s | on I, respectively. If |h| ≤ h0, then

φc(h;µL) ≤ E {Ec(h)} ≤ φc(h;µM),

where

φc(h;µ) =
1

36
µ2h4 +

1

2

ε2f
h2
.

Proof. A standard calculation shows that

fs(t0 + h)− fs(t0 − h)

2h
= f ′s(t0) +

1

6
f (3)s (ξ)h2,

for some ξ ∈ [t0 − h, t0 + h] ⊆ I, and thus

f(t0 + h)− f(t0 − h)

2h
= f ′s(t0) +

1

6
f (3)s (ξ)h2 +

ε(t0 + h)− ε(t0 − h)

2h
.

Since |h| ≤ h0, the iid assumption on the noise ε(·) and (6) now yield that

E {Ec(h)} = E

{(
f(t0 + h)− f(t0 − h)

2h
− f ′s(t0)

)2
}

=

(
1

6
f (3)s (ξ)

)2

h4 +
1

2

ε2f
h2
.

The result follows by using µL and µM to bound the expression for E {Ec(h)}. �

We estimate the minimum of the expected error E {Ec} by analyzing the mapping φc in

Lemma 4.1. A calculation shows that φc is uniformly convex and that

min
h
φc(h;µ) = γ4µ

2/3 ε
4/3
f , γ4 =

1

4
31/3 ≈ 0.361. (12)

The next result shows that the global minimizer for µM , defined by

|hM | = γ5

(
εf
µM

)1/3

, γ5 = 31/3 ≈ 1.44, (13)

plays an important role in the behavior of E {Ec}.
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Theorem 4.2 Assume that fs : R 7→ R is three times differentiable in I; set µL and µM to

the minimum and maximum of |f (3)s | on I, respectively; and define hM by (13). If |hM | ≤ h0,

then

γ4 µ
2/3
L ε

4/3
f ≤ min

|h|≤h0
E {Ec(h)} ≤ γ4 µ2/3M ε

4/3
f .

Proof. Since γ4 µ
2/3ε

4/3
f is a lower bound for φc(·, µ), Lemma 4.1 shows that

γ4 µ
2/3
L ε

4/3
f ≤ min

|h|≤h0
φc(h;µL) ≤ min

|h|≤h0
E {Ec(h)} ≤ min

|h|≤h0
φc(h;µM).

The proof is completed by noting that (12) holds for µ = µM when |hM | ≤ h0. �

Theorem 4.2 shows that with a central difference approximation we can expect an error

of order ε
2/3
f . This is an improvement over the order ε

1/2
f error for one-sided differences that

comes at a cost of one additional function evaluation. If f is noisy, this is not a significant

improvement. For example, if εf = 10−6, then the accuracy improves by a factor of 10,

while if εf = 10−12, then the accuracy improves by a factor of 100. Thus, we can expect

improvements of one to two decimal places in the derivative at the cost of an additional

function evaluation. The situation does not improve if we use a higher-order difference

approximation since in this case φ is of the general form

φ(h;µ) = µ1h
2p + µ2

ε2f
h2
,

where p ≥ 2 is the order of the approximation and the constants µ1 and µ2 are determined

by the approximation. Thus, the expected error is on the order of ε
p/(p+1)
f but at the cost

of p function evaluations.

Lemma 4.1 and Theorem 4.2 extend a result in [2] by establishing a lower bound for

E {Ec} and thus providing sharp estimates for the minimal value of E {Ec(h)} as a function

of h. These bounds show that the parameter hM is nearly optimal in the sense that

γ4 µ
2/3
L ε

4/3
f ≤ E {Ec(hM)} ≤ γ4 µ2/3M ε

4/3
f .

Thus hM satisfies the same bounds as in Theorem 4.2. These bounds also imply that

E {Ec(hM)} ≤
(
µM

µL

)2/3

min
|h|≤h0

Ec(h).

Hence, the error E {Ec(hM)}1/2 grows by a factor that depends on (µM/µL)p, where p = 1/3.

This is an improvement over Corollary 3.3, where p = 1.

We now consider the standard central difference approximation to f ′′ and show that in

this case we again obtain expected errors of order ε
1/2
f . We express the results in terms of

the error function

E2(h) =

(
f(t0 + h)− 2f(t0) + f(t0 − h)

h2
− f ′′s (t0)

)2

.

13



Lemma 4.3 Assume that fs : R 7→ R is four times differentiable in I, and set µL and µM

to the minimum and maximum of |f (4)s | on I, respectively. If |h| ≤ h0, then

φ2(h;µL) ≤ E {E2(h)} ≤ φ2(h;µM),

where

φ2(h;µ) =
( µ

12

)2
h4 + 6

ε2f
h4
.

Proof. Taylor’s theorem shows that

fs(t0 + h)− 2fs(t0) + fs(t0 − h)

h2
− f ′′s (t0) =

1

12
f (4)s (ξ)h2

for some ξ ∈ [t0 − h, t0 + h] ⊆ I, and thus

f(t0 + h)− 2f(t0) + f(t0 − h)

h2
− f ′′s (t0) =

1

12
f (4)s (ξ)h2 +

ε(t0 + h)− 2ε(t0) + ε(t0 − h)

h2
.

The iid assumption on the noise ε(·) and (6) then yield that

E {E2(h)} = E

{(
f(t0 + h)− 2f(t0) + f(t0 − h)

h2
− f ′′s (t0)

)2
}

=

(
1

12
f (4)s (ξ)

)2

h4 + 6
ε2f
h4
.

The result is a direct consequence of this expression. �

We now determine the global minimizers of the mapping φ2 in Lemma 4.3. A calculation

shows that φ2 is uniformly convex and that

min
h
φ2(h;µ) = γ6µεf , γ6 = (16)1/2 ≈ 0.408. (14)

Also note that the unconstrained global minimizers for µM are defined by

|hM | = γ7

(
εf
µM

)1/4

, γ7 = 25/8 31/8 ≈ 2.33. (15)

The next result analyzes the behavior of E {E2(h)} and shows that hM plays an impor-

tant role in this analysis. This result follows the pattern used for the forward difference

approximation to f ′ in Section 3.

Theorem 4.4 Assume that fs : R 7→ R is four times differentiable in I; set µL and µM to

the minimum and maximum of |f (4)s | on I, respectively; and define µM by (15). If |hM | ≤ h0,

then

γ6µLεf ≤ min
|h|≤h0

E {E2(h)} ≤ γ6µMεf .

Proof. Lemma 4.3 implies that

min
|h|≤h0

φ2(h;µL) ≤ min
|h|≤h0

E {E2(h)} ≤ min
|h|≤h0

φ2(h;µM).

14



The proof now follows from the observations that γ6 µεf is a lower bound for φ2(·, µ) and

that (14) holds if µ = µM and |hM | ≤ h0. �

The similarity between Theorem 4.4 for f ′′s and Theorem 3.2 for f ′s is of interest. In both

cases the bounds depend linearly on µLεf and µMεf . In this vein, note that Theorem 4.4

and (14) imply that if hM is defined by (15), then

γ6µLεf ≤ E {E2(hM)} ≤ γ6µMεf , E {E2(hM)} ≤
(
µM

µL

)
min
|h|≤h0

E {E2(h)} .

These inequalities show that hM yields nearly optimal bounds.

Similar results have appeared in the literature. If the computed function f is determin-

istic and of the form (9) where the error function satisfies (10), then [5, 6] show that the

parameter h that minimizes a bound on the l1 error for the centered approximations to f ′

and f ′′ are, respectively, (
3εA

|f (3)(ξa)|

)1/3

and 2

(
3εA

|f (4)(ξb)

)1/4

for some ξa and ξb. As discussed in Section 3, these results do not guarantee near optimality

and rely on the bound εA instead of the noise level εf .

5 An Algorithm for Forward Difference Estimates

In this section we summarize our algorithm for obtaining a nearly optimal estimate of the

derivative for forward differences. A similar approach can be applied for other difference

schemes. We also indicate how far from optimality our estimates could be in practice.

As in the previous sections, f : R 7→ R is the computed function and is defined in

an interval I around t0. However, since our main interest is in deterministic simulations,

our algorithms refer only to the computed function f . Estimates of f ′′s required by the

theoretical results are replaced by estimates of f ′′.

We assume that a positive estimate of the noise level εf is available. We obtain εf with

the ECnoise algorithm detailed in [13], at an expense of 6–8 function evaluations. In our

experience, these function values can be saved by reusing noise estimates obtained at a base

point t1 6= t0. This is almost certainly the case if t0 is of the same order of magnitude as t1.

If the relative noise is expected to be constant, then the scaled noise (f(t0)/f(t1)) εf can

be used.

We next require a coarse estimate of the second derivative. The step hM in (8) requires a

bound, µM = maxt∈I |f ′′(t)|; but in practice this is unavailable, and we rely on an estimate

µ of |f ′′(t0)|. Given the estimate µ and the noise level εf , we use

h∗ = 81/4
(
εf
µ

)1/2

(16)

as the difference parameter to estimate f ′(t0). Below we show that h∗ is relatively insensitive

to the estimate µ ≈ |f ′′(t0)|, and thus a rough estimate of f ′′ yields a highly accurate
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approximation of f ′. We also note that it may be possible to estimate |f ′′(t0)| from the

function values used by ECnoise, but we do not pursue this possibility here.

Our aim is to produce an estimate of f ′′ with a few function evaluations. Our algorithm

for obtaining the estimate relies on the second-order difference

∆(h) = |f(t0 − h)− 2f(t0) + f(t0 + h)|.

We do not want to choose h too small since then computational noise corrupts the compu-

tation of ∆(h), while if h is too large, then truncation errors destroy the accuracy of ∆(h).

We accept h as being sufficiently large if

∆(h)

εf
≥ τ1 (17a)

for some constant τ1 � 1. This signal-to-noise test relies on the observation that if h is

too small, then ∆(h) is of the order of εf . We also require that all function values that

contribute to ∆(h) be similar and thus that h not be too large. We thus require that

|f(t0 ± h)− f(t0)| ≤ τ2 max {|f(t0)|, |f(t0 ± h)|} (17b)

for some constant τ2 ∈ (0, 1). This test guarantees that there is cancellation in the compu-

tation of ∆(h) and thus that h is not too large.

If h satisfies the tests in (17), then µ = ∆(h)/h2 should be a suitable estimate of |f ′′(t0)|.
We could use a search technique to determine an h that satisfies these conditions, but we

prefer to use at most 2–4 function evaluations to this task. Our heuristics for choosing h are

outlined in Figure 5.1. These heuristics are closely related to the work [5] on determining

suitable difference parameters for estimating |f ′′| by accepting µ = ∆(h)/h2 as an estimate

if
∆(h)

4εA
∈
[
10, 103

]
.

Our computational results show that the lower bound in this test should be replaced by

(17a) with τ1 = 100, while the upper bound is too restrictive. We often accept h values

that violate this upper bound but satisfy (17b) with τ2 = 0.1.

Algorithm 5.1 Heuristic for an estimate of |f ′′(t0)|.

Set τ1 = 100 and τ2 = 0.1 in (17).

Set ha = ε
1/4
f and µa = ∆(ha)/h

2
a. Exit with µ = µa if ha satisfies (17).

Set hb = (εf/µa)
1/4 and µb = ∆(hb)/h

2
b . Exit with µ = µb if hb satisfies (17).

Exit with µ = µb if |µa − µb| ≤ 1
2µb.

16



The choice of ha = ε
1/4
f in Algorithm 5.1 is motivated by (15). Theorem 4.4 shows that

this choice of ha is likely to be acceptable if µM in (15) is of modest size. If µM is large,

then the estimate of µa tends to be large, and thus we use this estimate in our choice of

hb. In our computational experiments hb � ha, but this is not guaranteed. In most cases

the choice of hb produces a good estimate of |f ′′(t0)|, but this estimate may not satisfy

condition (17) when the noise is relatively large. Thus Algorithm 5.1 also sets µ = µb if

both estimates µa and µb are similar.

It may be the case, as will be seen in the numerical experiments, that after running this

algorithm we are unable to satisfy both tests, though this situation generally occurs when

the noise is relatively large. One should proceed carefully in such an event. The subject of

characterizing when the function is too noisy to allow for estimates of f ′′ or f ′ is beyond

the scope of this paper.

Having defined h∗ in (16) (when an estimate µ is computable) as an approximation to

the hM desired in theory, we now study the sensitivity of this step to εf and µM .

Theorem 5.2 Assume that fs : R 7→ R is twice differentiable in I; set µL and µM to the

minimum and maximum of |f ′′s | on I, respectively; and define hM by (8). If αhM ≤ h0, then

E {E(αhM)}
E {E(hM)}

≤ µ2M
µ2L + µ2M

(
1

α2
+ α2

)
.

Proof. Lemma 3.1 shows that for any hα ≤ h0 there is an µα ≤ µM such that

E {E(hα)} =
1

4
µ2αh

2
α + 2

ε2f
h2α
.

Setting hα = αhM and using the definition of hM in this expression, we have that

E {E(αhM)} =
εf√

2

(
µ2αα

2

µM

+
µM

α2

)
=

εf√
2

(
µ2αα

4 + µ2M
µMα2

)
.

We now finish the proof by noting that

E {E(αhM)}
E {E(hM)}

=
1

α2

(
µ2αα

4 + µ2M
µ21 + µ2M

)
≤ µ2M
µ2L + µ2M

(
1

α2
+ α2

)
,

where the upper bound is obtained by using µL as a lower bound for µ1 and µM as an upper

bound for µα. �

Theorem 5.2 corrects the bound in the first part of Theorem 5.1 in [2], which depends

on the claim that (in our notation)

E {E(hM)} =
√

2µMεf .

Simple examples show that this claim and the result in [2] does not hold for nonquadratic

functions. In this work we use the weaker result

E {E(αhM)}
E {E(hM)}

≤
(

1

α2
+ α2

)
,
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since this bound quantifies the effects of estimating the unknown quantities εf and µM in

h∗. If h∗ = αhM , then

E {E(h∗)}1/2 ≤
(

1

α2
+ α2

)1/2

E {E(hM)}1/2 ≤
(

1

α
+ α

)
E {E(hM)}1/2 ,

and thus the expected error E {E(h∗)}1/2 grows slowly with the ratio α = h∗/hM . This

result shows, in particular, that if we misestimate εf/µM by a factor of 10d for some d > 0,

then α ∈ [10−d/2, 10d/2], and thus

E {E(h∗)}1/2 ≤ 10d/2E {E(hM)}1/2 .

Thus, we are likely to lose d/2 digits relative to the best possible value. We will present

computational verification of this result in the next section.

6 Computational Experiments

In this section we assume that f : Rn 7→ R and analyze the empirical properties and

limitations of the algorithm proposed in Section 5 on a variety of problems. In all cases we

choose a direction p ∈ Rn and apply Algorithm 5.1 to the function

φ(t) = f(x0 + tp)

for some x0 ∈ Rn. We generate a difference parameter h∗ and compare the resulting differ-

ence estimate with estimates obtained from other h values against an accurate directional

derivative f ′(x0; p) by examining the errors

E(h) =

(
f(x0 + hp)− f(x0)

h
− f ′(x0; p)

)2

.

This approach depends on choosing a value for f ′(x0; p) that is itself noisy. In the case of

the stochastic functions in Figure 3, we used the analytic derivative of the mean, but this

approach will not work for deterministic functions.

When reliable hand-coded derivatives are not available, the approach we take is to set

f ′(x0; p) to the directional derivative obtained through automatic differentiation. We have

found stable estimates of the derivatives for the problems presented here using the MATLAB

tool IntLab [14]. In our experience IntLab produces estimates of the derivatives that are

within the noise level of the derivative and are thus as accurate as possible.

We have already seen an example of our approach for the Higham function in Figure 2

(right) where the relative error

R(h) =
1

|f ′(x0; p)|
√
E(h) =

1

|f ′(x0; p)|

∣∣∣∣f(x0 + hp)− f(x0)

h
− f ′(x0; p)

∣∣∣∣
was plotted for many different h. Despite the fact that the noise in this function is by no

means iid, the h∗ estimated by our algorithm falls very close to the minimum of the errors.
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Stochastic Problems

We have seen that our computed h∗ is close to the optimal h for the stochastic polynomials

in Figure 3. As an example of a more complex problem where the noise level is not specified

in advance, we consider the MCfinance problem

f(x) = (2π)−n/2
∫
Rn

n∏
i=0

1

1 + ri(u, x)
e−

‖u‖2
2 du

discussed in [13]. We set n = 3 and generate 106 standard normal random variables to

obtain a Monte Carlo evaluation of f at x0 = [.1, .1, .1]. For a random direction p, the

directional derivative f ′(x0; p) is computed with IntLab.

Figure 4: Plot of realizations of R(h) for the stochastic MCfinance problem.

While the majority of the estimates of f ′(x0; p) had relative errors R(h) > 1, Figure 4

shows that our h∗ is able to obtain the correct first digit of f ′. This shows that proper choice

of the difference parameter h can yield (admittedly coarse) estimates of f ′ for problems for

which derivative estimation is difficult at best.

We are also interested in determining the difference between the realized error R(h) for

a given h and the expected error E {E(h)} as defined in Section 3. Since Lemma 3.1 shows

that the expected error can be estimated by

Re(h) =
1

|f ′(x0; p)|

√
1

4
µ2h2 + 2

ε2f
h2
, (18)

where µ is our estimate of f ′′(x0; p), we have plotted this estimate in Figure 4. As can be

seen in this figure, Re(h) is close to the actual errors. Also, the value of h∗ produced by

our algorithm is close to the minimum of the estimates Re(h) of the errors.

Noisy Quadratic Problems

As an initial example of deterministic functions, we consider the noisy quadratic function

defined by f(b) = ‖x(b)‖2 where x(b) is the bicgstab solution of Ax = b using a relative

tolerance of τ = 10−3.
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We use the same set of 116 matrices used in [13], representing all symmetric positive

definite matrices of dimension less than 104 in the University of Florida (UF) Sparse Matrix

Collection [4]. Following [13], we scale the matrices by their diagonals and randomly select

the base point x0 and direction p. The resulting matrices have an (absolute) noise level

ranging in order from 10−16 to 100. The directional derivative f ′(x0; p) is computed with

IntLab.

Figure 5: Quadratic associated with the UF matrix bcsstk26 (n = 1922): Plot of the mapping

h 7→ f(x0 + hp) (left) and plot of the relative errors R (right).

Figure 5 (left) illustrates the noise in the function values for the UF matrix bcsstk26. The

noise produced for this matrix is typical for the bicgstab algorithm. Figure 5 (right) shows

realizations of the relative error R(h) for many different h values as well as the expected

error as estimated by (18) for the quadratic function associated with the bcsstk26 matrix.

Plots of the relative error R for the other matrices in the UF collection are similar. The

behavior ofR in this plot bears a striking resemblance to that for the stochastic quadratic in

Figure 3 (left), illustrating that the proposed algorithm can also work well for deterministic

noise.

We ran our algorithm on the entire set of 116 matrices and found that we were unable

to obtain reliable estimates of |f ′′(x0)| using the heuristic in Algorithm 5.1 on 16 of the

matrices. These 16 cases generally correspond to the noisiest problems, for which we do not

expect our algorithm to produce stable estimates.

Figure 6 summarizes the results for the remaining 100 quadratics, when the problems

are sorted by the relative errors R(h∗). For comparison, we also show the realized error

for difference parameters that are two orders of magnitude smaller and larger than h∗. As

predicted by Theorem 5.2, the general trend is that h∗ yields derivatives with two more

correct digits than 10±2h∗. For five of the 100 matrices we see that smaller errors are

realized for one of the alternatives, but these improvements tend to be minor and reflect

the variability expected from Figure 5.
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Figure 6: Plot of R(h∗) and R(10±2h∗) for 100 quadratics.

Smooth Problems

A feature of quadratics, provided they are not too noisy, is that the second derivative

remains relatively constant, thus allowing reasonable estimates of the second derivative to

be obtained for any h that is not small. Figure 5 (left) shows that for these problems we

need to choose h� 10−8. We now examine how the algorithm performs on highly nonlinear

problems, where this is not the case.

We analyze the same five MINPACK-2 problems considered in [11] but use more dimen-

sions. In [11] n = 10, 000, while we use the five dimensions

n ∈ {2.5, 10, 40, 160, 640} · 103

for each problem. In addition to representing high-dimensional nonlinear functions, these

problems have the benefit of possessing hand-coded derivatives, which we use to obtain

f ′(x0; p) for our comparisons. In support of the reliability of IntLab for the other test

problems, Table 1 shows that the IntLab derivatives agree remarkably well with the hand-

coded directional derivatives for the MINPACK-2 problems. Table 1 also shows that, as

expected, the hand-coded derivatives are faster and that the computing time for both types

of derivatives grows linearly with n.

Table 1: Comparison of IntLab and hand-coded derivatives on the ept problem.

n Relative Error Hand-coded time [s] IntLab time [s]

2500 3.17 · 10−15 2.74 · 10−4 5.36

10000 5.53 · 10−15 9.90 · 10−4 22.2

40000 2.79 · 10−14 4.23 · 10−3 109

Figure 7 summarizes the results for these 25 problems when the problems are sorted by

the relative errors R(h∗). As before, we plot the realized error for difference parameters

21



that are two orders of magnitude perturbations of h∗ and note that the error from h∗

is smaller than these two alternatives for all 25 problems. These results show that our

techniques are applicable to problems with a large number of variables and that the results

are independent of the number of variables. For the specific case of the ept problem with

n = 640, 000, Figure 7 (right) shows that the relative error R(h) generally behaves as before

but that the realizations no longer agree well with the estimated error for small h. In this

case, the noise level εf has been overestimated roughly by a factor 6; but as predicted by

Theorem 5.2, the resulting h∗ is insensitive to this small misestimation.

Figure 7: Plot of R(h∗) and R(10±2h∗) for 25 MINPACK-2 problems (left) and R(h) for

problem ept with n = 640, 000 (right).
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